Yocto OS User Manual

OS

1. OS Version

- a) Name: Yocto OS
- b) Kernel Version: Poky(4.0.9)

2. OS Login

- a) Username: root, no root password
- b) The system automatically logs in when it is switched on

3. Note

The system is equipped with power-up protection, which requires pressing the

Power button to switch on the system.

Processor Set

The RK3588 integrates four high-performance Arm Cortex-A76 CPU cores and four low-power Cortex-A55 CPU cores, along with a built-in high-frequency Mali-G52 GPU and an NPU co-processor.

1. CPU Temperature

a) Chip centre temperature soc-thermal

cat /sys/class/thermal/thermal_zone0/temp

b) CPU big core A76_0/1; CPU4 和 CPU5 temp

cat /sys/class/thermal/thermal_zone1/temp

c) CPU big core A76_2/3; CPU6 和 CPU7 temp

cat /sys/class/thermal/thermal_zone2/temp

d) CPU little core A55_0/1/2/3; CPU0、CPU1、CPU2、CPU3 temp

cat /sys/class/thermal/thermal_zone3/temp

a) GPU temp

cat /sys/class/thermal/thermal_zone5/temp

b) NPU temp

cat /sys/class/thermal/thermal_zone6/temp

2. CPU Point Description

Point	Description
policy0	to set and read CPU little core 0~3
policy4	to set and read CPU big core 4~5
policy6	to set and read CPU big core 6~7

3. CPU Working Mode

a) CPU Mode Description

Mode	Description
interactive	Runs at maximum frequency, gradually decreases depending on CPU compliance, disadvantage of high power consumption
conservative	Gradual and smooth CPU frequency adjustment, dynamic adjustment at upper and lower frequency limits
ondemand	The CPU switches to the highest frequency when it is performing calculations and drops to the lowest frequency at the end of the calculation.
userspace	Provide API for users to set CPU frequency independently.
powersave	CPU fixed at lowest frequency
performance	Fixed operation at maximum frequency
schedutil	The system automatically adjusts the frequency according to the load

b) CPU Operational mode reading

cat /sys/devices/system/cpu/cpufreq/policy0/scaling_available_governors cat /sys/devices/system/cpu/cpufreq/policy4/scaling_available_governors cat /sys/devices/system/cpu/cpufreq/policy6/scaling_available_governors

c) CPU Operation mode setting

echo "mode" > /sys/devices/system/cpu/cpufreq/policy0/scaling_governor echo "mode" > /sys/devices/system/cpu/cpufreq/policy4/scaling_governor echo "mode" > /sys/devices/system/cpu/cpufreq/policy6/scaling_governor

4. CPU Operating Frequency

The default CPU working mode is schedutil mode, which does not support frequency setting. To set the frequency, you need to set the CPU working mode to userspace mode first.

a) Get the current CPU supported frequency

cat /sys/devices/system/cpu/cpufreq/policy0/scaling_available_frequencies cat /sys/devices/system/cpu/cpufreq/policy4/scaling_available_frequencies cat /sys/devices/system/cpu/cpufreq/policy6/scaling_available_frequencies

b) Set the CPU operating mode to usespace mode

echo userspace > /sys/devices/system/cpu/cpufreq/policy0/scaling_governor echo userspace > /sys/devices/system/cpu/cpufreq/policy4/scaling_governor echo userspace > /sys/devices/system/cpu/cpufreq/policy6/scaling_governor

c) Setting the CPU frequency

echo xxx > /sys/devices/system/cpu/cpufreq/policy0/scaling_setspeed echo xxx > /sys/devices/system/cpu/cpufreq/policy4/scaling_setspeed echo xxx > /sys/devices/system/cpu/cpufreq/policy6/scaling_setspeed

d) Check if the setup is successful

cat /sys/devices/system/cpu/cpufreq/policy0/cpuinfo_cur_freq cat /sys/devices/system/cpu/cpufreq/policy4/cpuinfo_cur_freq cat /sys/devices/system/cpu/cpufreq/policy6/cpuinfo_cur_freq

5. GPU Operating frequency

a) Get the frequency supported by the GPU

cat /sys/class/devfreq/fb000000.gpu/available_frequencies

b) Set GPU working mode

echo userspace > /sys/class/devfreq/fb000000.gpu/governor

c) Setting GPU frequency

echo xxx > /sys/class/devfreq/fb000000.gpu/userspace/set_freq

d) Check if the setup is successful

cat /sys/class/devfreq/fb000000.gpu/cur_freq

6. NPU Operating Frequency

a) Get the frequency supported by the NPU

cat /sys/class/devfreq/fdab0000.npu/available_frequenciess

b) Setting the NPU working mode

echo userspace > /sys/class/devfreq/fdab0000.npu/governor

c) Setting NPU frequency

echo xxx > /sys/class/devfreq/fdab0000.npu/userspace/set_freq

d) Check if the setup is successful

cat /sys/class/devfreq/fdab0000.npu/cur_freq

Board Setup

1. LED Settings

- a) Power(Red) LED does not support modification, only System(White) LED supports customization.
- b) To query System LED settable status.

cat /sys/class/leds/white_led/trigger

c) Set to "default-on" as an example.

echo default-on > /sys/class/leds/white_led/trigger

d) Additional notes on the "timer" model

Timer mode generates two profiles for setting the length of time the LEDs are on and off.

i. Take setting the LED to light up for 100ms as an example

NAMTSO

echo 100 > /sys/class/leds/white_led/delay_on

ii. Take setting the LED off for 900ms as an example

echo 900 > /sys/class/leds/white_led/delay_off

2. LAN Setting

- a) LAN ON
 - i. Enable LAN

ifconfig eth0 up

- ii. Connect the Internet and assign IP automatically.
- b) WoL Function Setting
 - i. Enable Wake-on-LAN function

echo 1 > /sys/class/wol/eth0_enable

ii. Enable WoL wake-up function and reset system function

echo 3 > /sys/class/wol/eth0_enable

iii. Disable WoL function

echo 0 > /sys/class/wol/eth0_enable

3. Button Functional Description

- a) Power on and off
 - i. After powering up the product, press the Power button briefly to switch on the device.
 - ii. Press and hold the Power button to turn off the power.
- b) Device reset

Short press Reset button, system reset directly reboot.

Firmware burning mode.
Quickly press the Function button 3 times in a row, the device enters the Maskrom burning mode.

4. Wi-Fi & BT Setting

- a) Wi-Fi&BT and NAMTSO Link are multiplexed PCle, default is off, enable method:
 - i. edit "/boot/uEnv.txt".

wifi=off → wifi=on

ii. Reboot device Wi-Fi.

b) Scan Wi-Fi:

wpa_cli -i wlan0 scan wpa_cli -i wlan0 scan_results

NAMTSO

c) Connect Wi-Fi Device:

wpa_cli -i wlan0 add_network [network_id] wpa_cli -i wlan0 set_network [network_id] ssid '''ssid'''

wpa_cli -i wlan0 set_network [network_id] psk "password"

wpa_cli -i wlan0 enable_network [network_id]

d) Check the Wi-Fi:

iw wlan0 link

e) Obtaining a Wi-Fi IP address:

udhcpc -i wlan0

f) Turn on the Bluetooth device:

rfkill unblock all hciconfig hci0 up

g) Use Bluetooth control function:

bluetoothctl

h) Initialize and scan Bluetooth:

[bluetooth]# agent on [bluetooth]# default-agent [bluetooth]# power on [bluetooth]# discoverable on [bluetooth]# pairable on [bluetooth]# scan on [device list]

i) Connect Bluetooth Device:

[bluetooth]# connect [device address]

5. FAN Setting

a) Get the current working mode of the fan.

fan.sh mode

b) Fan operating mode setting.

Disable \rightarrow fan.sh off Enable \rightarrow fan.sh on Auto Mode \rightarrow fan.sh auto Manual Mode \rightarrow fan.sh manual

C) Fan speed setting(Only Manual Mode)

i. Maximum speed mode:

fan.sh highest

ii. High-speed mode:

fan.sh high

iii. Medium speed mode:

fan.sh mid

iv. Low speed mode:

fan.sh low

iii. Minimum speed mode:

fan.sh lowest

Overlay

1. Introduction of Overlay

Overlay function means to quickly overwrite the DTB and modify the system tree settings through dtbo file without recompiling the system source code. The Overlay function makes it easy to quickly test the reusable functions.

2. Overlay Function

Currently the A10-3588 has two default Overlay functions. PWM as well as SPI respectively, which can be changed to normal GPIOs after startup with Overlay named:

PWM: pwm-gpio-overlay.dtbo SPI: spi-gpio-overlay.dtbo

- 3. Overlay Usage
- a) Overlay Files Specific location.

/boot/dtb/rockchip/rk3588-namtso-a10-3588.dtb.overlays/

b) View current configurable Overlay features.

ls /boot/dtb/rockchip/rk3588-namtso-a10-3588.dtb.overlays/ pwm-gpio-overlay.dtbo spi-gpio-overlay.dtbo

c) Overlay Function Profiles.

/boot/dtb/rockchip/rk3588-namtso-a10-3588.dtb.overlay.env

e) Take "pwm-gpio-overlay.dtbo" for example, save the edits and reboot the system, reload the DTB to take effect, after enabling this pwm port as a normal gpio use:

edit → /boot/dtb/rockchip/rk3588-namtso-a10-3588.dtb.overlay.env fdt_overlays=pwm-gpio-overlay

f) Use "pwm-gpio-overlay.dtbo", save the edits and reboot the system, reload the DTB

to take effect, after disabling this port as pwm functionality.

edit \rightarrow /boot/dtb/rockchip/rk3588-namtso-a10-3588.dtb.overlay.env fdt_overlays

g) For custom Overlay function, please refer to the SDK development documentation.

Expansion Header

6. Expansion LED

a) Querying the Expansion LED setting status.

cat /sys/class/leds/ext_led/trigger

b) Set to "default-on", for example.

echo default-on > /sys/class/leds/ext_led/trigger

c) Supplementary note on the 'timer' model.

Timer mode generates two profiles for setting the length of time the LEDs are on and off.

iii. Take setting the LED to light up for 100ms as an example.

echo 100 > /sys/class/leds/ext_led/delay_on

iv. Take setting the LED off for 900ms as an example.

echo 900 > /sys/class/leds/ext_led _led/delay_off

7. CAN

a) Open CAN:

ip link set can0 up

b) Close CAN:

ip link set can0 down

c) View CAN configuration information:

ifconfig -a | grep can

d) Set the baud rate:

ip link set can0 type can bitrate 250000

e) Receive CAN messages:

candump can0

f) Send messages:

cansend can0 123#1122334455667788

8. I2C

If "/dev/i2c-2" and "/dev/i2c-4" exist, you can use i2c-tools to manipulate this I2C interface.

1) List all available i2c buses:

i2cdetect -I

2) Retrieve devices on I2C4:

i2cdetect -y -r 4

3) Read the device connected to the I2C4:

i2cget -f -y 4 0x1d 0x0d

Its device address is "0x1d" and its register address is "0x0d".

4) Set the device connected to the I2C4:

i2csset -f -y 4 0x1d 0x0d 0x02

Its device address is "0x1d" and register address is "0x0d", modify it to "0x02".

9. SPI

Just use "Is /dev/spidev3.0" to confirm that the spi bus is turned on.

10. UART

1. Device Point.

The left serial port is UARTO, the right serial port is UART1.

/dev/ttyWCH0 /dev/ttyWCH1

2. Baud rate setting.

Take UARTO as an example:

stty -F /dev/ttyWCH0 ispeed 115200 ospeed 115200 cs8 stty -F /dev/ttyWCH0 speed 115200 cs8 -parenb -cstopb -echo

3. Send Data

echo "aaa" > /dev/ttyWCH0

4. Read Data

cat /dev/ttyWCH0

11. Power KEY

Same function as Power Button for external expansion of power buttons.

Encoding and Decoding

1. Encoding

a) Check the supported encoding formats:

gst-inspect-1.0 grep mpp		
rockchipmpp:	mpph264enc: Rockchip Mpp H264 Encoder	
rockchipmpp:	mpph265enc: Rockchip Mpp H265 Encoder	
rockchipmpp:	mppjpegdec: Rockchip's MPP JPEG image decoder	
rockchipmpp:	mppjpegenc: Rockchip Mpp JPEG Encoder	
rockchipmpp:	mppvideodec: Rockchip's MPP video decoder	
rockchipmpp:	mppvp8enc: Rockchip Mpp VP8 Encoder	
typefindfunctions: audio/x-musepack: mpc, mpp, mp+		

b) Encoding Mode NV12 to H.264:

gst-launch-1.0 -v filesrc location=./test.yuv ! videoparse width=1920 height=1080 format=nv12 ! mpph264enc ! h264parse ! queue ! filesink location=./test.h264

c) Encoding USB camera:

gst-launch-1.0 v4l2src device=/dev/video80 io-mode=mmap num-buffers=300 ! image/jpeg, width=1920, height=1080, framerate=30/1 ! mppjpegdec ! mpph264enc ! filesink location=./test.h264

2. Decoding

a) Check supported decoding formats:

gst-inspect-1.0 grep mpp		
rockchipmpp:	mpph264enc: Rockchip Mpp H264 Encoder	
rockchipmpp:	mpph265enc: Rockchip Mpp H265 Encoder	
rockchipmpp:	mppjpegdec: Rockchip's MPP JPEG image decoder	
rockchipmpp:	mppjpegenc: Rockchip Mpp JPEG Encoder	
rockchipmpp:	mppvideodec: Rockchip's MPP video decoder	
rockchipmpp:	mppvp8enc: Rockchip Mpp VP8 Encoder	
rockchipmpp:	mppvpxalphadecodebin: VP8/VP9 Alpha Decoder	
typefindfunctions: audio/x-musepack: mpc, mpp, mp+		

b) Decode MP4 files as an example:

gst-launch-1.0 filesrc location=./test.mp4 ! qtdemux name=d d.video_0 ! h264parse ! mppvideodec ! video/x-raw,format=NV12 ! filesink location=test.yuv

c) Decode H.264 files:

gst-launch-1.0 filesrc location=./test.h264 ! h264parse ! mppvideodec ! video/x-raw,format=NV12 ! filesink location=test.yuv

Accessories

1. Expansion Board A9A10

a) RS485

Refer to the UART section of the motherboard for usage. The device node is:

/dev/ttyWCH2

- b) SATA
 - i. Formatting.

mkfs.ext4 /dev/sdxv

ii. Take the example of mounting to the mnt directory.

mount /dev/sdxv /mnt

- c) 2.5 Gigabits LAN
 - i. LAN1 Point is eth1, LAN2 Point is eth2.
 - ii. Refer to the motherboard LAN section for usage.
- d) RS232

Refer to the UART section of the motherboard for usage. The device node is:

/dev/ttyWCH3

- e) M.2 Slot
 - i. Formatting:

mkfs.ext4 /dev/nvmexny

ii. Take the example of mounting to the mnt directory.

mount /dev/nvmexny /mnt